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Causes, consequences, and potential 

remedies to low foodweb productivity in 

brackish waters of the San Francisco 

Estuary 



How much food and why? 

?? I’m 

hungry! 



Which foodweb? 

• Freshwater Delta 

• Low-Salinity Zone (LSZ, ~ 0.5 – 5 or 10) 

• Salty regions – South Bay-San Pablo Bay 



Main points 

1. Plankton are quasi-Lagrangian particles 

2. Limits to primary production 

3. Consequent limits to zooplankton production 

4. Spatial subsidies 

5. How to design an estuarine copepod 

6. Can we fix the low productivity? 

7. Some key questions 

 

 Some old stuff, some new!  



IEP Monitoring 1972-86  

San Francisco Estuary: 
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1. Plankton are quasi-Lagrangian particles 
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1. Plankton are quasi-Lagrangian particles 
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1. Plankton are quasi-Lagrangian particles : why quasi 
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Effect of particle behavior on transport 
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1. Plankton are quasi-Lagrangian particles : why quasi 

Kimmerer Gross MacWIlliams 
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Effect of particle behavior on transport 
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Primary production 

Examples 

LSZ 2006 - 2007 

Kimmerer et al. 2012 

Estuaries & Coasts 

2. Limits to primary production: light 

                 Primary Productivity (mgC m-3)                              
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2. Limits to primary production: Grazing 

Small                           Large 
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2. Limits to primary production: Grazing 

Small                           Large 



Phytoplankton Production: Size Fractions 

Particles < ~ 5 μm 
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2. Limits to primary production: Net growth 1987-2008 



• Ammonium Inhibition 

2. Limits to primary production: Ammonium inhibition 



Symbols: Integration and Application Network,  

UMD Center for Environmental Science 

2. Limits to primary production: Conceptual Model 



Mixing diagrams 

14C Measurements 

Light profiles 

Growth rate 

& efficiency 

Clam biomass and filtration rate 

(spatially intensive surveys) 

Dilution experiments 

Chlorophyll, counts 

Symbols: Integration and Application Network,  

UMD Center for Environmental Science 

2. Limits to primary production: Conceptual Model 

Nutrient bioassays 
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3. Limits to zooplankton production: Low-salinity foodweb 
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3. Limits to zooplankton production: Foodweb 

York et al. 

2013 Estuaries & Coasts 



3. Limits to zooplankton production: slow development 
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3. Limits to zooplankton production: slow development 
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3. Limits to zooplankton production: predation 
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4. Spatial subsidies: Conceptual model 
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4. Spatial subsidies: Conceptual model 
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4. Spatial subsidies: phytoplankton 
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4. Spatial subsidies: phytoplankton  
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4. Spatial subsidies: copepod distributions 

Kimmerer et al. 

Fall Habitat study 
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• Phytoplankton are small    

• Low food supply      

• Most fish are visual predators   

• Few filter-feeding predators   

• Phytoplankton are small   Eat ciliates  

• Low food supply     Low feeding rate 

• Most fish are visual predators  Small, cryptic 

• Few filter-feeding predators  Slow growth OK 

5. How to design an estuarine copepod: Method 1 
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• Phytoplankton are small    

• Low food supply      

• Most fish are visual predators   

• Few filter-feeding predators   

• Phytoplankton are small   Don’t eat ‘em  

• Low food supply     Eat copepods 

• Most fish are visual predators  Grow fast 

• Few filter-feeding predators  Doesn’t matter 

5. How to design an estuarine copepod: Method 2 
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• Phytoplankton are small    

• Low food supply      

• Most fish are visual predators   

• Few filter-feeding predators   

• Phytoplankton are small   Be omnivorous  

• Low food supply     ?? 

• Most fish are visual predators  Spatial refuge 

• Few filter-feeding predators  Doesn’t matter 

5. How to design an estuarine copepod: Method 3 

Pseudodiaptomus 

forbesi 

Kimmerer et al. 

Fall Habitat study 
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6. Can we fix the low productivity?  

• Alter productivity directly 

• Increase the large-scale spatial subsidy 

• Use small-scale spatial subsidies  

– Marsh restoration 



Symbols: Integration and Application Network,  

UMD Center for Environmental Science 

6. Can we fix the low productivity? 

Ammonium?  

Clams? 

Turbidity? 
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6. Can we fix the low productivity? Large-scale export 

High flow 

 increases subsidy to  

Low-Salinity zone 
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3 months @  

$0.10 / m3 or $120/AF 
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6. Can we fix the low productivity? Large-scale export 
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Shallow water:  

High growth 
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Production:  
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6. Can we fix the low productivity? Marsh export 

Symbols: Integration and Application Network,  

UMD Center for Environmental Science 



6. Can we fix the low productivity? Marsh export 
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      Marsh 
Area      1000 ha 

Depth      2m 

Copepods    23 mgC m-3 

Growth rate     0.1 d-1 

Residence time 10d 

 Open Water 
Volume      0.5 km3 

Copepods      3 mgC m-3 

Resulting subsidy: 

3% of existing copepod biomass d-1 
Behavior  

predation 

6. Can we fix the low productivity? Export of plankton 



 Flux of zooplankton to and from marshes 

 

• Lake zooplankton abundance low in shoals 

• Marsh in NY a sink for zooplankton 

• Australian tidal creek a sink for copepods  

• Saltmarsh a sink for copepods, source for larvae 

• China Camp: marsh a sink for mysids 

• Liberty Island: source or sink 

 

6. Can we fix the low productivity? Literature review 



7.  Some key questions: marsh subsidy  

Can marshes 

subsidize open-

water 

foodwebs, and 

under what 

conditions?  

Field and modeling 

studies of fluxes 

between marshes 

and open water 



Field and laboratory 

studies of uptake of 

marsh detritus by 

pelagic organisms 

How much can 

marsh export of 

organic matter 

contribute to 

pelagic 

foodwebs?  

7.  Some key questions: marsh subsidy  



7.  Some key questions: phytoplankton production  

Integrated 

experiments  

and modeling 



7.  Some key questions: phytoplankton production  

Will reducing 

ammonium 

discharge 

reverse the 

decline? 

Integrated 

experiments  

and modeling 

How do light 

limitation, 

ammonium, 

and grazing 

interact to limit 

production? 



7.  Some key questions: phytoplankton production  

Will reducing 

ammonium 

discharge 

reverse the 

decline? 

Integrated 

experiments  

and modeling 



Summary 
• Plankton move with the water 

– Use their frame of reference 

• Three reasons for low foodweb productivity 
– Light limitation 

– Grazing 

– Ammonium concentration 

• Three unlikely remedies 
– Increase outflow 

– Get rid of clams 

– Plankton farms 

• Three potential remedies 
– Reduce ammonium loading 

– Marshes as plankton factories 

– Detrital output of marshes 

Will this be 

science-based, 

or faith-based? 
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Subsidies from marsh: phyto model  

Area    1000 ha 

Depth    2m 

Phytoplankton  900 mgC m-3 

Growth rate   0.86 d-1 

Microzoo grazing  60%  

Residence time  10d 

Volume      0.5 km3 

Phytoplankton    73 mgC m-3 

Resulting subsidy: 

5% of existing phytoplankton biomass d-1 



Phytoplankton 

(microbes) 

Post-Clam Biomass 

Clams 

Kimmerer 2006 MEPS   

Pelagic Fish Demersal Fish 

Phytoplankton (microbes) 

Anchovy 

Cyclopoids 

Calanoids 

Mysids 

Crangon Shrimp 

Benthos 

Rotifers 

Pre-Clam Biomass 

Lesson 9: Foodweb interactions can be subtle 



Zooplankton as “ecological filters” * 
 

How does variation in phytoplankton productivity translate to 

variability in fish recruitment? 

Efficiency of transfer to fish 

Characteristic Low High 

Phytoplankton size Small Large 

Seasonal pattern (vs. fish) Unpredictable Predictable 

Sensitivity to food Low High 

Reproductive mode Egg carriers Broadcast spawners 

Palatability / nutrition Low High 

Zooplankton size (fish size) Small Large  

Detectability (feeding mode) Low High 

Catchability (feeding mode) Low High 

Foodweb length Long Short 


